Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Biotechnol Bioeng ; 121(5): 1659-1673, 2024 May.
Article in English | MEDLINE | ID: mdl-38351869

ABSTRACT

Monoclonal antibodies (MAbs) are powerful therapeutic tools in modern medicine and represent a rapidly expanding multibillion USD market. While bioprocesses are generally well understood and optimized for MAbs, online quality control remains challenging. Notably, N-glycosylation is a critical quality attribute of MAbs as it affects binding to Fcγ receptors (FcγRs), impacting the efficacy and safety of MAbs. Traditional N-glycosylation characterization methods are ill-suited for online monitoring of a bioreactor; in contrast, surface plasmon resonance (SPR) represents a promising avenue, as SPR biosensors can record MAb-FcγR interactions in real-time and without labeling. In this study, we produced five lots of differentially glycosylated Trastuzumab (TZM) and finely characterized their glycosylation profile by HILIC-UPLC chromatography. We then compared the interaction kinetics of these MAb lots with four FcγRs including FcγRIIA and FcγRIIB at 5°C and 25°C. When interacting with FcγRIIA/B at low temperature, the differentially glycosylated MAb lots exhibited distinct kinetic behaviors, contrary to room-temperature experiments. Galactosylated TZM (1) and core fucosylated TZM (2) could be discriminated and even quantified using an analytical technique based on the area under the curve of the signal recorded during the dissociation phase of a SPR sensorgram describing the interaction with FcγRIIA (1) or FcγRII2B (2). Because of the rapidity of the proposed method (<5 min per measurement) and the small sample concentration it requires (as low as 30 nM, exact concentration not required), it could be a valuable process analytical technology for MAb glycosylation monitoring.


Subject(s)
Antibodies, Monoclonal , Receptors, IgG , Antibodies, Monoclonal/chemistry , Receptors, IgG/metabolism , Surface Plasmon Resonance , Glycosylation , Temperature , Trastuzumab
2.
Methods Mol Biol ; 2762: 89-105, 2024.
Article in English | MEDLINE | ID: mdl-38315361

ABSTRACT

Surface plasmon resonance (SPR)-based biosensing enables the characterization of protein-protein interactions. Several SPR-based approaches have been designed to evaluate the binding mechanism between the angiotensin-converting enzyme 2 (ACE2) receptor and the receptor-binding domain (RBD) of the SARS-CoV-2 spike protein leading to a large range of kinetic and thermodynamic constants. This chapter describes a robust SPR assay based on the K5/E5 coiled-coil capture strategy that reduces artifacts. In this method, ACE2 receptors were produced with an E5-tag and immobilized as ligands in the SPR assay. This chapter details methods for high-yield production and purification of the studied proteins, functionalization of the sensor chip, conduction of the SPR assay, and data analysis.


Subject(s)
Biosensing Techniques , COVID-19 , Humans , SARS-CoV-2/metabolism , Angiotensin-Converting Enzyme 2/metabolism , Spike Glycoprotein, Coronavirus/metabolism , Biosensing Techniques/methods , Protein Binding
3.
ACS Omega ; 8(31): 28301-28313, 2023 Aug 08.
Article in English | MEDLINE | ID: mdl-37576632

ABSTRACT

Many biomedical and biosensing applications require functionalization of surfaces with proteins. To this end, the E/K coiled-coil peptide heterodimeric system has been shown to be advantageous. First, Kcoil peptides are covalently grafted onto a given surface. Ecoil-tagged proteins can then be non-covalently captured via a specific interaction with their Kcoil partners. Previously, oriented Kcoil grafting was achieved via thiol coupling, using a unique Kcoil with a terminal cysteine residue. However, cysteine-terminated Kcoil peptides are hard to produce, purify, and oxidize during storage. Indeed, they tend to homodimerize and form disulfide bonds via oxidation of their terminal thiol group, making it impossible to later graft them on thiol-reactive surfaces. Kcoil peptides also contain multiple free amine groups, available for covalent coupling through carbodiimide chemistry. Grafting Kcoil peptides on surfaces via amine coupling would thus guarantee their immobilization regardless of their terminal cysteine's oxidation state, at the expense of the control over their orientation. In this work, we compare Kcoil grafting strategies for the subsequent capture of Ecoil-tagged proteins, for applications such as surface plasmon resonance (SPR) biosensing and cell culture onto protein-decorated substrates. We compare the "classic" thiol coupling of cysteine-terminated Kcoil peptides to the amine coupling of (i) monomeric Kcoil and (ii) dimeric Kcoil-Kcoil linked by a disulfide bond. We have observed that SPR biosensing performances relying on captured Ecoil-tagged proteins were similar for amine-coupled dimeric Kcoil-Kcoil and thiol-coupled Kcoil peptides, at the expense of higher Ecoil-tagged protein consumption. For cell culture applications, Ecoil-tagged growth factors captured on amine-coupled monomeric Kcoil signaled through cell receptors similarly to those captured on thiol-coupled Kcoil peptides. Altogether, while oriented thiol coupling of cysteine-terminated Kcoil peptides remains the most reliable and versatile platform for Ecoil-tagged protein capture, amine coupling of Kcoil peptides, either monomeric or dimerized through a cysteine bond, can offer a good alternative when the challenges and costs associated with the production of monomeric cysteine-tagged Kcoil are too dissuasive for the application.

4.
Can J Surg ; 65(4): E407-E416, 2022.
Article in English | MEDLINE | ID: mdl-35790239

ABSTRACT

BACKGROUND: The benefits of using cadaveric humans in surgical training are well documented, and knowledge of the latest endovascular techniques is essential in the daily practice of vascular surgeons. Our study explores the feasibility of an affordable human cadaveric model with pulsatile and heated antegrade perfusion for reliable and reproducible endovascular or surgical simulation. METHODS: We undertook cannulation of 7 human cadavers embalmed in a saturated salt solution to create a left-to-right central perfusion with a heated solution, from the ascending thoracic aorta to the right atrium. To that end, we used surgically created carotidojugular and femorofemoral arteriovenous fistulas. Biomedical engineers designed a prototype pump for pulsatile circulation. We monitored invasive blood pressure and temperature. We used this model for training for endovascular thoracic aortic procedures and open vascular surgeries. RESULTS: The prototype pump achieved a pulsatile flow rate of 4.7 L/min. Effective cadaveric perfusion was achieved for several hours, not only with an arterioarterial pathway but also with arteriovenous circulation. The arterial pressures and in situ temperatures accurately restored vascular functions for life-like conditions. This new model made it possible to successfully perform thoracic endovascular aortic repair, subclavian artery stenting and simulation of abdominal open vascular trauma management. The saturated salt solution method and a specifically designed pump improved cost competitiveness. CONCLUSION: Endovascular simulation on human cadavers, optimized with the pulsatile and heated perfusion system, can be a dynamic adjunct for surgical training and familiarization with new devices. This reproducible teaching tool could be relevant in all surgery programs.


Subject(s)
Endovascular Procedures , Cadaver , Humans , Perfusion/methods , Pulsatile Flow , Stents
5.
Sci Rep ; 12(1): 11520, 2022 07 07.
Article in English | MEDLINE | ID: mdl-35798770

ABSTRACT

Several key mutations in the Spike protein receptor binding domain (RBD) have been identified to influence its affinity for the human Angiotensin-Converting Enzyme 2 (ACE2). Here, we perform a comparative study of the ACE2 binding to the wild type (Wuhan) RBD and some of its variants: Alpha B.1.1.7, Beta B.1.351, Delta B.1.617.2, Kappa B.1.617.1, B.1.1.7 + L452R and Omicron B.1.1.529. Using a coiled-coil mediated tethering approach of ACE2 in a novel surface plasmon resonance (SPR)-based assay, we measured interactions at different temperatures. Binding experiments at 10 °C enhanced the kinetic dissimilarities between the RBD variants and allowed a proper fit to a Langmuir 1:1 model with high accuracy and reproducibility, thus unraveling subtle differences within RBD mutants and ACE2 glycovariants. Our study emphasizes the importance of SPR-based assay parameters in the acquisition of biologically relevant data and offers a powerful tool to deepen our understanding of the role of the various RBD mutations in ACE2 interaction binding parameters.


Subject(s)
Angiotensin-Converting Enzyme 2 , COVID-19 , Spike Glycoprotein, Coronavirus , Temperature , Angiotensin-Converting Enzyme 2/genetics , COVID-19/genetics , Humans , Mutation , Protein Binding , Reproducibility of Results , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics
6.
Int J Mol Sci ; 22(12)2021 Jun 21.
Article in English | MEDLINE | ID: mdl-34205578

ABSTRACT

Surface plasmon resonance (SPR)-based optical biosensors offer real-time and label-free analysis of protein interactions, which has extensively contributed to the discovery and development of therapeutic monoclonal antibodies (mAbs). As the biopharmaceutical market for these biologics and their biosimilars is rapidly growing, the role of SPR biosensors in drug discovery and quality assessment is becoming increasingly prominent. One of the critical quality attributes of mAbs is the N-glycosylation of their Fc region. Other than providing stability to the antibody, the Fc N-glycosylation influences immunoglobulin G (IgG) interactions with the Fcγ receptors (FcγRs), modulating the immune response. Over the past two decades, several studies have relied on SPR-based assays to characterize the influence of N-glycosylation upon the IgG-FcγR interactions. While these studies have unveiled key information, many conclusions are still debated in the literature. These discrepancies can be, in part, attributed to the design of the reported SPR-based assays as well as the methodology applied to SPR data analysis. In fact, the SPR biosensor best practices have evolved over the years, and several biases have been pointed out in the development of experimental SPR protocols. In parallel, newly developed algorithms and data analysis methods now allow taking into consideration complex biomolecular kinetics. In this review, we detail the use of different SPR biosensing approaches for characterizing the IgG-FcγR interactions, highlighting their merit and inherent experimental complexity. Furthermore, we review the latest SPR-derived conclusions on the influence of the N-glycosylation upon the IgG-FcγR interactions and underline the differences and similarities across the literature. Finally, we explore new avenues taking advantage of novel computational analysis of SPR results as well as the latest strategies to control the glycoprofile of mAbs during production, which could lead to a better understanding and modelling of the IgG-FcγRs interactions.


Subject(s)
Immunoglobulin G/metabolism , Receptors, IgG/metabolism , Surface Plasmon Resonance
7.
Mol Immunol ; 121: 144-158, 2020 05.
Article in English | MEDLINE | ID: mdl-32222585

ABSTRACT

Most of therapeutic monoclonal antibodies belong to the immunoglobulin G1 (IgG1) family; they interact with the Fcγ receptors (FcγRs) at the surface of immune cells to trigger effector functions. The IgG1-Fc N-glycans impact the interaction with FcγRs and are considered a critical quality attribute. Pioneer studies on FcγR N-glycans have unveiled an additional complexity in that the N-glycan linked on the Asn-162 of FcγRIIIa was shown to be directly involved in the strong affinity for afucosylated IgG1. The last few years have thus seen the emergence of many studies investigating the complex influence of FcγRIIIa N-glycans on the interaction with IgG1 through their glycosylation sites or their glycoprofiles. In this context, we performed site-directed mutagenesis along with glycoengineering on FcγRs (FcγRI, FcγRIIaH131/b and FcγRIIIaV158/F158) in an effort to elucidate the impact of FcγRs N-glycans on the interaction with IgG1. Furthermore, we assessed their binding to various trastuzumab glycoforms with an enhanced surface plasmon resonance assay. The FcγRIIIa N-glycans had the highest impact on the interaction with IgG1. More specifically, the N162 glycan positively influenced the affinity (15-fold) for afucosylated IgG1 while the N45 glycan presented a negative impact (2-fold) regardless of the IgG1 glycoforms. Interestingly, only the FcγRIIIa glycoprofile had an impact on the interaction with IgG1 with a 1.5-fold affinity increase when FcγRIIIa displays high-mannose glycans. These results provide invaluable insights into the complex and strong influence of N-glycosylation upon FcγRs/IgG1 binding and are instrumental to further understand the impact of FcγRs N-glycosylation in their natural forms.


Subject(s)
Immunoglobulin G/metabolism , Receptors, IgG/metabolism , Animals , CHO Cells , Cricetulus , Glycosylation , HEK293 Cells , Humans , Immunoglobulin G/immunology , Mannose/metabolism , Mutagenesis, Site-Directed , Polysaccharides/metabolism , Protein Engineering , Protein Isoforms/genetics , Protein Isoforms/immunology , Protein Isoforms/metabolism , Receptors, IgG/genetics , Receptors, IgG/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...